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The Niche 

„The ecological space occupied by a species“  
Krebs: Ecology, 2009 

 

„It is an imaginary space, but measurable“  
Van Horne & Ford 1982 

 

„n-dimensional hypervolume“  
Hutchinson, 1957 

 

 

 

 

1) The niche is an autoecology concept: a species property 

2) But what is the ecological niche? 

McInerny & Etienne 2012 Journal of Biogeography: the ditch, stitch and pitch 
the niche trilogy papers  

 
 

Hutchinson 



Niche 
 

1) Relevance for communities and ecosystems:  
• Overlapping leads to competition and thus to 

altered dominance patterns in communities 
 

2) How to represent the niche? Dimensions? Display 
format? Labelling of axes? 

  1D – 3D 



Niche: 1D 

Example: 
Plants in the Alps and 
their temperature 
ranges at which 
photosynthesis is still 
possible at low 
irradiation (by Piesek 
et al. 1973; in Begon et 
al. Ecology, 2006) 



Niche: 2D 

Example: 
Survival of prawns  
(Crangon 
septemspinosa) 
depending on 
temperature and 
salinity (by Haefner, 
1970; in Begon et al. 
Ecology, 2006) 



Niche: 3D 

Example: 
3D-niche for a 
hypothetical aquatic 
organism (Begon et al. 
Ecology, 2006) 



 

„Conditions: Abiotic environmental 
factors that influence the 

functioning of living organisms“  
Begon et al.: Ecology, 2006 

 

 
 

Defining niches: Resources vs. Conditions 

Bionomic variables 
(Hutchinson, 1957) or 
Eltonian niche (Elton, 

1927) 

 

Scenopoetic variables 
(Hutchinson, 1957) or 

Grinnellian niche 
(Grinnell, 1917) 

 

 
 

„Resources: That which may be 
consumed by an organism and, 

as a result, becomes unavailable 
to another, e.g. food, water, 

nesting sites, etc … “  
Begon et al.: Ecology, 2006 



• Which conditions are relevant in an ecosystem? 
  temperature, pH, salinity, wind, waves, currents, 

fire 

• Which abiotic resources are relevant resources? 
  radiation/light, water, CO2, O2, N, P, K 
• Which of the two can be used to define a niche? 
  Both, but often conditions are more suitable than 

resources, because continuous variables are needed 
and resources are not always continuous (e.g. number 
of mice or other biotic resources) 

Defining niches: Resources vs. Conditions 

Begon et al.: Ecology, 2006  



• Experiments on the resource use of diatoms 
• David Tilman: Resource competition & 

community structure, 1982 
 

 

Defining niches: The R*-concept 

Picture: Wipeter on wikimedia commons 



 
 
 
 
 
 
 
 
 

  Low resource requirements at equilibrium (=R*) 
lead to competitive superiority (here of species B) 

David Tilman: Resource competition & community structure, 1982 

Defining niches: The R*-concept 

 Basis for 
competition theory 
& stochastic niche 
concept 

m: mortality 
N: population size 
A,B: species 



Defining niches: beyond conditions and 
resources 

Soberón 2010 Ecography 

A: Scenopoetic variables/conditions 
B: Bionomic variables/resources 
M: Dispersal (and demographic) 
constraints 

Fundamental vs. Realized niches 
(Hutchinson 1957) 

Establishment vs. Persistence niches 
(Holt 2009) 



Defining niches: beyond conditions and 
resources 

Holt 2009 PNAS 

Niche evolution 



Modelling niches 

Species distribution models (SDMs): 

•Phenomenological: also called 
correlative niche models, climate 
envelopes or habitat models  

 



Modelling niches 

Species distribution models (SDMs): 

•Phenomenological: also called 
correlative niche models, climate 
envelopes or habitat models  

 
• Overlaying environmental layers 
and correlating presence/absence 
data with local environments 



Modelling niches 

Species distribution models (SDMs): 

• But what do they model? 

 

Soberón 2010 Ecography 



Modelling niches 

Species distribution models (SDMs): 

• Pros: 
Simple data required 

Many methods available, ensemble modelling 

Applicable for a large amount of species 

• Cons: 
Sampled from realized niche, often biased data 

Species-environment equilibrium assumption 

Static in time 

Rarely validated 

Low spatiotemporal transferability 

Non-suitable for forecasts No causal relationship 



Modelling niches 

Species distribution models (SDMs): 

•Mechanistic or process-based: 

Morin et al. 2008 Journal of Ecology Kearney & Porter 2009 Ecology Letters 



Modelling niches 

Species distribution models (SDMs): 

•Mechanistic or process-based: 

  t = t +1 

Initialization 

Survival 

Local extinction 

Simulation model 

Dispersal 

Reproduction 

Recruitment 
Reproduction

Dispersal

Recruitment

Survival

Sprouter
Reproduction

Dispersal

Recruitment

Survival

Sprouter

Cabral & Schurr 2010 Global Ecology and Biogeography 

 

Simulated Abundances 

0 ind/cell
1-150 ind/cell
151-300 ind/cell
301-450 ind/cell
451-600 ind/cell

50 km
(f) 

0 ind/cell
1-5500 ind/cell
5501-11000 ind/cell
11001-16500 ind/cell
16501-22000 ind/cell50 km

(e) 

(d) (c) 

Predicted Abundance Observations 

N (0 ind.)
S (1-10 ind.)
F (11-100 ind.)
C (101-10000 ind.)
A (>10000 ind.)

(a) (b) 

Leucadendron modestum Protea stokoei 

Observed Abundance Data 

N (0 ind.)
S (1-10 ind.)
F (11-100 ind.)
C (101-10000 ind.)
A (>10000 ind.)



Modelling niches 

Species distribution models (SDMs): 

• Pros: 
Direct appraisal of processes (causal effects) 

Relaxation from the equilibrium assumption 

Interpretable parameters 

• Cons: 
Data and computation demanding 

Species-specific 

Equifinality 

Reproduction

Dispersal

Recruitment

Survival

Sprouter
Reproduction

Dispersal

Recruitment

Survival

Sprouter

 

Simulated Abundances 

0 ind/cell
1-150 ind/cell
151-300 ind/cell
301-450 ind/cell
451-600 ind/cell

50 km
(f) 

0 ind/cell
1-5500 ind/cell
5501-11000 ind/cell
11001-16500 ind/cell
16501-22000 ind/cell50 km

(e) 

(d) (c) 

Predicted Abundance Observations 

N (0 ind.)
S (1-10 ind.)
F (11-100 ind.)
C (101-10000 ind.)
A (>10000 ind.)

(a) (b) 

Leucadendron modestum Protea stokoei 

Observed Abundance Data 

N (0 ind.)
S (1-10 ind.)
F (11-100 ind.)
C (101-10000 ind.)
A (>10000 ind.)

More realistic and useful forecasts 

Cabral & Schurr 2010 Global Ecology and Biogeography 



Modelling niches 

Species distribution models (SDMs): 

• Pros: 
Direct appraisal of processes (causal effects) 

Relaxation from the equilibirum assumption 

Interpretable parameters 

• Cons: 
Data and computation demanding 

Species-specific 

Equifinality 

More realistic forecasts 

Fitted vs. Forward models 

Data quality and multiple patterns 

Sensitivity analysis 



Modelling niches 
Forward models: 



Modelling niches 
Forward models: 

Keith et al. 2008 Biology Letters 



Modelling niches 
Forward models: 



Modelling niches 
Fitted models: 

Cabral & Schurr 2010 Global Ecology and Biogeography 



Modelling niches 
Demographic models: processes 

  t = t +1 

Initialization 

Survival 

Local extinction 

Simulation model 

Dispersal 

Reproduction 

Recruitment 

Reproduction

Dispersal

Recruitment

Survival

Sprouter
Reproduction

Dispersal

Recruitment

Survival

Sprouter

Cabral & Schurr 2010 Global Ecology and Biogeography 



-Monoecious :    Protea 

-Diecious : Leucadendron 

-Monoecious: Protea 

-Diecious: Leucadendron 

Beverton-Holt 
Model 

F

I

R

E

Sprouter

(high persistence ability)

Nonsprouter

(low persistence ability)

F

I

R

E

Persistence ability:   

Ricker Model 

Reproductive system:   Population dynamics:   

Modelling niches 
Demographic models: study system 

Cabral & Schurr 2010 Global Ecology and Biogeography 



Modelling niches 
Observation models: Accounting for imperfect detection 

Likelihood 
Abundance 

data 

Likelihood Observation 

Model 

Likelihood 

Demographic 

Model 

Likelihood 

Cabral & Schurr 2010 Global Ecology and Biogeography 

   Survey/Grid cell area ratio x   
   Probability to observe an individual x  
   Long-term mean Abundance (ecological output) 



Modelling niches 
Range dynamics: spatial predictions 

Observed 

Abundances 

– Protea 

Atlas 

Predicted 

observations 

Simulated 

abundances 

Cabral & Schurr 2010 Global Ecology and Biogeography 



Modelling niches 
Range dynamics: parameter values 

=> Realistic parameter values; 

=> Parameter values can be 
compared to independent 
estimates; 

=> Values obtained generally 
agree with species traits. 
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Nonsprouter Sprouter 

Life-history trait 

Cabral & Schurr 2010 Global Ecology and Biogeography 



Modelling niches 
Range dynamics under non-equilibrium: 

perfect migration no migration 



Modelling niches 
Range dynamics under non-equilibrium: design 

No habitat loss 

With habitat loss 

    No climate change 

    No climate change 

    With climate change 

   With climate change 

300 Generations (~ 3000 yr) 5 Generations (~ 50 yr) 5 Generations (~ 50 yr) 

Present 
Time step or 
generation 

Scenarios: 

Control 

CC 

HL 

HL/CC 

Each cell looses a percentage in area 
(lower carrying capacity)  

Time-series of habitat models 

Simulation until 
quasi-stationary 
state 

Cabral et al. 2013 Diversity and Distributions 



Modelling niches 
Range dynamics under non-equilibrium: time-series 

 

2010 (b) 2040 (e) 

2030 (d) 

2050 (f) 

0 ind/ha
0-1 ind/ha
1-10 ind/ha
10-100 ind/ha
100-1000 ind/ha

50 km

(a) 2000 

2020 (c) 

0 ind/ha
0-1 ind/ha
1-10 ind/ha
10-100 ind/ha
100-1000 ind/ha

50 km

Leucadendron modestum 

Cabral et al. 2013 Diversity and Distributions 



Modelling niches 
Range dynamics under non-equilibrium: scenarios 

Cabral et al. 2013 Diversity and Distributions 

Protea 

compacta 
 (a) 

0 ind/ha
0-5.5 ind/ha
5.5-11 ind/ha
11-16.5 ind/ha
16.5-22 ind/ha

50 km

(b) 

(c) 

(d) 

Control Only climate change 

Only Habitat loss Habitat loss + climate change 

Occupied range 

affected:  

- Little colonization;  

- Importance of 

range remaining 

suitable 

Local abundances affected 

Worst scenario, but 

better than the sum 

of separate effects: 

The role of pristine 

refugia in range 

remaining suitable 



Modelling niches 
Range dynamics under non-equilibrium: viable refugia 

Cabral et al. 2013 Diversity and Distributions 



Modelling niches 

Species distribution models (SDMs): 

•Mechanistic or process-based: 

• Biotic interactions 

• Evolutionary processes 

• Integrate all processes 

What is missing? 

Soberón 2010 Ecography 

• Physiological constraints 



Modelling niches 

Including interactions (multi-species models): 



Modelling niches 

Including interactions (multi-species models): 

Initialization 

Population update 1 (sexual 
maturation, juvenile survival, 
germination, seed survival) 

Dispersal 

Reproduction 

Population update 2 (adult 
survival, seed bank update) 
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m
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Flow chart: 

Hierarchical structure: 

Single species 
demography 

Space 
competition 

Community properties (e.g. richness) 

Metabolic response functions 

Space availability 

Range dynamics of single species 

Species vary in traits and habitat requirements 

Cabral & Kreft 2012 Journal of Biogeography 



Modelling niches 

=> Sloped plane: decreasing temperature 

1:15

1
:1

5

0

1000

2000

3000

4000

(a) 

Abundance distribution 

Potential Realized range 

ind cell-1 

0 
1000 
2000 

4000 
3000 

1:15

1:1
5

0

100

200

300

400

A
lt

it
id

u
n

al
 g

ra
d

ie
n

t
 

1:15

1
:1

5
0.1

0.2

0.3

0.4

0.5

=> Single species in a pool of 400 competing species 

Including interactions (multi-species models): 

Also obtained 
when simulated 
alone 

Cabral & Kreft 2012 Journal of Biogeography 



Modelling niches 

=> Sloped plane: decreasing temperature 

=> Single species in a pool of 400 competing species 
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Species may be more 
abundant under 
suboptimal 
conditions if 
competition is 
considered.  

Also obtained 
when simulated 
alone 

Including interactions (multi-species models): 

Cabral & Kreft 2012 Journal of Biogeography 



Modelling niches 
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0 50 100 150 200 

0 

50 

100 

150 

200 34% of all species 
could not fill their 
potential range 
when simulated 
alone; 49% under 
competition.  

Including interactions (multi-species models): 

Cabral & Kreft 2012 Journal of Biogeography 



Modelling niches 

=> GLM: RF ~ Traits + habitat requirements + species richness 

Significant variables:  

Body mass (+); 

LDD (+, mostly for herbs); 

Mean dispersal distance (+, mostly for trees); 

Allee effect (-, mostly for herbs); 

Being annual (-); 

Optimal temperature (- for trees); 

Species richness (+ for herbs, - for trees).   

Importance of species 
traits as well as 
competition pressure 
(i.e. Species richness) 

Including interactions (multi-species models): 

Cabral & Kreft 2012 Journal of Biogeography 



Modelling niches 
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Species richness distribution 
Mean Potential Total Richness
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=> Surviving community: 

Including interactions (multi-species models): 

Cabral & Kreft 2012 Journal of Biogeography 



Modelling niches 

Next steps: 

=> Understanding niche evolution and ecological factors influencing 
speciation 

=> Range dynamics of competing species under environmental 
change 

=> Long spatiotemporal scales: emergent biogeographical patterns 
by simulating range dynamics 

=> Richness patterns across environmental gradients emerging from 
range dynamics 



Take-home Messages 

Species niches can be quantified, modelled and predicted 

Correlative niche models can be used to pinpoint important factors 
shaping occurrences 

Abiotic, biotic and auto-ecological factors shape the niche 

Observed species occurrences is product of an array of processes 

Process-based niche models can be used to assess important 
processes shaping occurrences 

Once relevant processes are modelled, it is easy to apply the model 
to non-equilibrium and hypothetical conditions 



Take-home Messages 

Increasing model complexity must be coupled with increasing 
emergent patterns to avoid equifinality and to enable multiple 
validations 

Investigating niche dynamics opens a new window to investigate 
biodiversity and macroecological patterns, unifying different 
ecological fields and theories 
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Isoclines of 
population growth 
depending on two 
essential resources 
R1 and R2.  
A: negative growth 
B: zero growth 
C: positive growth 
(After Tilman, 
1982) 

Defining niches: Resources 

Begon et al.: Ecology, 2006  



Begon et al.: Ecology, 2006  

Defining niches: Resources 



Method 
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Method 
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Method 



Methods 

Harvest levels: 0-100% in steps of  4% 

Habitat displacement per timestep 

Local => Spatial-implicit; 

Regional or intermediate; 

Global or large; 

Fat-Tailed x Thin-Tailed dispersed; 

No x Weak x Strong Allee effects; 

Different Rmax, E, M and K values. 

Effects of  wild flower 

harvesting: 

• under climate change; 

 

• different scales; 

 

• different species traits. 

Spatial-

explicit 



2. The model 

Formulas 
Area occupied by an individual: b0Ba

-3/4eE/kBT 

Biological rates: b0Bs
-1/4e-E/kBT 

Local reproduction (Beverton-Holt extended with Allee effects): 
 
S(i,j)= (N(i,j) Rmax)/(1+k(N(i,j) – c)2), where 
 
k=4(Rmax – ma)/(ma(K(i,j) – C)2), 
 
c=C + √((Rmax – ma)/(ma k)),  
 
K(i,j) =((Ac–At(i))/Aa(j)) H(i,j) , where A represents areas and H habitat suitability 

Seeds coming in a cell: S(z,j)=  D(z,i) S(i,j) 


